
EigenTrust Algorithm for Reputation
Management in P2P Networks

Authors: Kamvar, Schlosser, Garcia

Andrew G. West

QTM: 11/16/2007

Presentation Outline

 P2P network introduction
 Ideal environment for malicious behavior and

spread of replicating inauthentic files

 EigenTrust algorithm
 Method to decrease inauthentic downloads
 Based on the distributed and secure calculation of

global trust values
 Identifies and isolates malicious peers

 EigenTrust effectiveness via simulations

Introduction to P2P

 Peer-to-Peer networks have advantages over
Client-Server model such as robustness,
scalability, and diversity of data.

 A complete lack of accountability opens door
to abuse. For example, VBS.Gnutella
 More common (less dangerous) are inauthentic

file attacks; mislabeled or non-working files.

 Literature suggests future of P2P depends on
peers knowing about quality of resources

P2P Design Considerations

 Issues important to all P2P reputation sys:
 (1): Self-policing. Peers must be enforcers, having

central authority defies P2P ideology.
 (2): Anonymity. Opaque identifiers, not IP.
 (3): No profit to newcomers. Reputation obtained

through good behavior. Malicious peers should
gain no advantage reverting to newcomer status.

 (4): Minimal overhead: Computation, storage, and
maybe most important, message size/frequency.

 (5): Robust to malicious collectives.

EigenTrust (ET) Summary

 Goal is to identify malicious peers
 Not files. Lack of removal mechanism? ∞ files

 Each peer i given global trust value that
reflects experiences of all other peers with i.

 All peers participate in calculating this value
with goal being minimal overhead.

 Strives to be secure, minimizing ability of
peers to lie for their own benefit.

 Identify and isolate malicious peers.

Reputation Systems

 Initially similar to eBay system (centralized)
 Sidenote: eBay gets a ton of attention.

 Each time peer i downloads from peer j
 The transaction gets rated:
 Positively (tr(i,j) = 1), or negatively (tr(i,j) = -1)

 Transactions form local trust value si,j

 si,j = Σ(tri,j)

 Alternatively, si,j = sat(i,j) – unsat(I,j)

Problems w/ Distributed RSYS

 Previous slide characteristic of most RSYS
 Existing (dist) systems suffer from two problems

 (1): Aggregation too small, relatively few peers
queried and a wide enough view of reputation not
achieved

 (2): Wide view obtained, but at the cost of network
congestion b/c of many messages

 ET attacks this issue with transitive trust
 Peer i will have good opinion of those peers it has

had positive transactions with AND is likely to
trust the opinions of those peers about others.

ET: Normalizing LTV

 Before aggregating local trust values, they are
normalized:
 Otherwise, malicious peers could present arbitrarily

low/high values to subvert system.
 Normalized local trust value:

 ci,j = max(si,j ,0) / (Σj max(si,j ,0))

 This normalization has admitted drawbacks:
 Values are relative, no absolute interpretation
 If ci,j = ci,k then j has same reputation as k, but past

interaction history could be very different
 Only considers peers with a positive history

A. West Running Example

 We’ll pretend that we are peer i.
 And we’ve rated some past interactions.

 j0: +1, +1, +1, -1, +1, +1, -1, -1, +1 : si,j0 = +3

 j1: +1, +1, +1, +1, +1, +1, +1 : si,j1 = +7

 j2: -1, -1, +1, -1, +1, +1, -1, -1 : si,j2 = -2

 j3: -1, +1, +1, +1, -1, +1, +1, +1 : si,j3 = +4

 And its no big deal to normalize them:
 ci,j0 = (3/14) = 0.21 ci,j1 = (7/14) = 0.50

 ci,j2 = (0/14) = 0.00 ci,j3 = (4/14) = 0.29

ET: Aggregating LTV

 To aggregate, peer i should ask his
acquaintances about another peer, k. These
opinions should be weighted by the trust i has
in the acquaintances.
 ti,k = Σj (ci,j * cj,k)

 That is ti,k represents the trust peer i places in
peer k based on asking his friends.

 Think about this in linear algebra terms…

A. West Running Example(2)

 If C = matrix [ci,j], and ti
→ is the vector

containing the values ti,k then ti
→ = CT x ci

→

 Um… what?

• Notice that the first
column of the matrix at
left corresponds to what
we previously
calculated as peer i’s
assumption about other
peer nodes

A. West Running Example(3)

 If C = matrix [ci,j], and ti
→ is the vector

containing the values ti,k then ti
→ = CT x ci

→

 Um… what?

• I made up values for
the other columns,
however notice that all
columns sum to 1,
because each
underwent local
normalization.

A. West Running Example(4)

 If C = matrix [ci,j], and ti
→ is the vector

containing the values ti,k then ti
→ = CT x ci

→

 Um… what?

• Peer’s shouldn’t be
making claims about
their own trust value, so
the value is initially set
to zero (A. West
assumption)

A. West Running Example(5)

 If C = matrix [ci,j], and ti
→ is the vector

containing the values ti,k then ti
→ = CT x ci

→

 Um… what? • If we square the
previous matrix. We get
the one at left.
• This is equivalent of
aggregation. If we look at
the new first column,
these are the adjusted
trust values if we ask one
level deep.
• This is what the math
above is really saying

A. West Running Example(6)

• If we take the original matrix
to the 7th power, we get the one
at left. This is the same data we
would get if we performed
aggregation operation 7
acquaintances deep.

• Notice that each column (the trust values of other nodes, as perceived by
that columns label) is becoming consistent across the matrix.
• If we take the original matrix to a high enough power N, all such vectors will
converge to a single value, the left principal eigenvector of C.
• We label the convergent vector the global trust vector.

Basic EigenTrust

 Note: In reality, we won’t have information about the
entire network (initially, matrix may be sparse). As
we delve into acquaintances, trust-data about such
peers will be realized.

 Informally, we can keep taking the matrix to a higher
and higher power until the difference (norm)
between the current global trust vector and the
previous falls below some desired threshold.

 For now, we are assuming a central server and we’ll
deal with the distributed environment in a minute.

A Larger Example

Original
Matrix
Squared

Original
to 10th
power

Practical Issues

 Three issues are ignored by previous alg:
 (1): A priori notions of trust – Some peers are

known trustworthy (founders).
 Trust data for these peers is artificially inflated.
 These peers are important later, we identify them as P

 (2): Inactive peers – If a peer doesn’t interact, or
has only bad interactions, its will have a 0-vector
and be stuck with 0-vector.
 To remedy this, if peer i knows no one, or trusts no

one, then i should trust the pre-trusted peers (1).

Practical Issues Contd.

 (3): Malicious collectives
 Defined: Group of peers who know each other, give

each other high local trust values and everyone else
low values in order to subvert system.

 Notation gets tricky, but intuitively:
 Force every peer to form some opinion about some of the

members of P (the trusted set).
 It looks suspect if a peer rates a member of P lowly
 Plus, P will have transactions with well-behaved peers,

which will begin to erode the cyclic pattern the malicious
collective was depending on.

 This constraint furthermore reduces “cycles” within the
matrix and guarantees the computation will converge

Picking Pre-Trusted Peers

 Since the notion of pre-trusted peers (P)
defends against malicious collectives,
guarantees convergence, and provides a
foundation of trust for inactive peers, their
selection is critical.
 If a member of P is malicious, things fall apart

very quickly
 Better to have few P with strong notion of trust
 Still an interesting, open research area

Distributed EigenTrust

 For now let’s assume everyone is honest,
and capable of storing its own local trust
vector (its direct opinion of its
acquaintances), and storing its own global
trust value (the global normalized perception
of itself).

 Then the algorithm looks something like…

Copy + Paste = Easy

• What’s important to see here is that
peer i needs to send only to Bi and
receive only from Ai.

• Probabilistically these sets should
represent only a very small portion of
the entire portion of the P2P network.

• Thus message passing overhead
should be minimal

• If several nodes are heavily active,
their transmission rates can be
capped with little consequence

Distributed Alg. Complexity

 The authors actually say nothing about
complexity, but are careful about bounding:
 Probability indicates message passing shouldn’t

be too huge in volume
 If it is too big for a few peers, just cap it, no big deal

 Convergence happens very quickly
 This is the looping part of the previous slide
 About 10 iterations in the general case

 Math + presumed data consistency guarantees quick
convergence, it’s a complex topic though

Secure EigenTrust

 It’s obviously insecure to let a peer manage
its own trust data. Easily manipulated.
 So we let another peer calculate it, instead.
 In this case, a malicious peer might return an

incorrect trust value for the peer its assigned.
 So let’s let multiple peers compute the trust value of a

single peer in the system.
 A majority vote on the trust value can then settle

conflicts arising from malicious peers being involved.
 Those tracking the trust of i are its score managers

Assigning Trust Managers

 Naïve strategies are inappropriate, as it may
allow malicious peers to still cooperate

 Instead: Use a distributed hash table (DHT)
to map peers into logical space using IP
addr.
 Dynamically subdivide the space into regions
 Every peer in a region becomes a trust manager

for all other peers in the same region
 By knowing another peer’s IP addr (or other key),

they can hash to which region they reside, and
collect information about them.

Increased Security/Reliability

 A well implemented approach meeting the
goals of the previous slide is advantageous:
 (1) Anonymity: Peers don’t know precisely whose

trust values they are computing. Thus, malicious
peers can not help other malicious peers

 (2) Randomization: Peers can’t choose or reason
the coordinates they map too. Thus, malicious
nodes can’t regionalize.

 (3) Redundancy: Multiple users in a single region,
and even multiple hash functions and multiple
dimension residency, if required.

Using Global Trust Values

 So we’ve done a lot of work computing these
values. Now how do we use them?

 (1): Isolate malicious peers by biasing users to
download from reputable peers

 (2): Provide incentive for peers to share files by
rewarding reputable peers

Isolating Malicious Peers

 We could have each peer download from the
highest trusted peer that responds to query.
 Those with high trust would be overloaded
 Doesn’t give others chance to build reputation

 Instead: distribute downloads probabilistically
based on trust values
 Limits unsatisfactory downloads, distributes load
 Users have option to bias selection through some

combination of local and global vectors.

Incentive for Freeriders to Share

 Reputable peers may be rewarded with
increased connectivity or greater bandwidth
 There is the obvious benefit of people sharing for

the above reasons.
 Secondly, it gives non-malicious peers incentive

to remove non-authentic files that they may
having accidentally/unknowingly downloaded.
Keeps the system as a whole tidy.
 Assumes that users are educated about rating model

Simulations

 The authors setup a model representing a typical
P2P network
 Consists of good and adversarial nodes
 Data distribution is concentrated on users interacting in

only certain data categories
 Simulation done in execution cycles, after each, the global

trust values are updated.
 Lots of insignificant details: All backed by literature.
 Metric of interest: Number of inauthentic downloads vs.

authentic ones

Graphs, charts, oh my!

 A lot of trees are wasted to demonstrate what
intuitively is assumed to be true:
 Probabilistic download source selection leads to

much better load distribution.
 Both consistently malicious individuals and

collectives are squashed by the algorithm
 Impressive statistics nonetheless:

 Even with 70% of users acting (consistently) malicious
(individually or collectively), authentic files can still be
returned with 90% probability

A Few Deficiencies Nonetheless

 Some subtle attacks are harder to reconcile:
 Adversaries with camouflage: Returning an inauthentic file

only x% of the time makes it harder to isolate those
employing this strategy

 Malicious spies: Only downloading, and providing +
feedback to those distributing inauthentic files

 Other attacks are highly effective:
 Sybil: Create thousands of users. Use once to distribute

inauthentic file, then disappear (Sol: CAPTCHA).
 Virus-Disseminators: 1% of the time send out a virus.

Solution: None, but then again, no one claims to solve this.

Conclusions

 Presented method to minimize impact of
malicious peers in P2P system.

 Entire system history can efficiently be taken
into consideration through calculation of
matrix eigenvector.
 Furthermore, this can be done in secure and

distributed manner

 The strategy proves effective under a number
of common attacks.

A. West Commentary

 Overall a pretty solid paper
 We’re still looking at a “soft” feedback system

 It is the users responsibility provide feedback
 A client might be viewed unfavorably if its feedback

retrieval mechanism is too intrusive.
 Similarly, one that is masked might only be taken

advantage of by malicious users
 The desire to provide feedback probably isn’t as strong as

with monetary exchange systems (eBay).

 Furthermore we assume that “good” user has ability
to identify inauthentic files? Not always the case.

A. West Commentary (2)

 “Hard” feedback in P2P systems
 Hard feedback can always be objective, so it

seems desirable to exploit it in any design.
 Virus scan? Some P2P clients have this functionality.

Users sharing infected files could have their local trust
values dramatically reduced (i.e. < -1).

 Packet completion? If a user fails to complete sharing
data it was supposed to…. Punish it!

 Downstream/upstream rate? In the general case,
there is a relation. If someone is downloading at T3
rates and uploading like a 56k, maybe some action
should be taken.

	EigenTrust Algorithm for Reputation Management in P2P Networks
	Presentation Outline
	Introduction to P2P
	P2P Design Considerations
	EigenTrust (ET) Summary
	Reputation Systems
	Problems w/ Distributed RSYS
	ET: Normalizing LTV
	A. West Running Example
	ET: Aggregating LTV
	A. West Running Example(2)
	A. West Running Example(3)
	A. West Running Example(4)
	A. West Running Example(5)
	A. West Running Example(6)
	Basic EigenTrust
	A Larger Example
	Practical Issues
	Practical Issues Contd.
	Picking Pre-Trusted Peers
	Distributed EigenTrust
	Copy + Paste = Easy
	Distributed Alg. Complexity
	Secure EigenTrust
	Assigning Trust Managers
	Increased Security/Reliability
	Using Global Trust Values
	Isolating Malicious Peers
	Incentive for Freeriders to Share
	Simulations
	Graphs, charts, oh my!
	A Few Deficiencies Nonetheless
	Conclusions
	A. West Commentary
	A. West Commentary (2)

